The Laramide orogeny was a time period of mountain building in western North America, which started in the Late Cretaceous, 80 to 70 million years ago, and ended 55 to 35 million years ago. The exact duration and ages of beginning and end of the orogeny are in dispute. The Laramide orogeny occurred in a series of pulses, with quiescent phases intervening. The major feature that was created by this orogeny was deep-seated, thick-skinned deformation, with evidence of this orogeny found from Canada to northern Mexico, with the easternmost extent of the mountain-building represented by the Black Hills of South Dakota. The phenomenon is named for the Laramie Mountains of eastern Wyoming. The Laramide orogeny is sometimes confused with the Sevier orogeny, which partially overlapped in time and space. The orogeny is commonly attributed to events off the west coast of North America, where the Kula Plate and were sliding under the North American Plate. Most hypotheses propose that oceanic crust was undergoing flat-slab subduction, that is, subduction at a shallow angle. As a consequence, no magmatism occurred in the central west of the continent, and the underlying oceanic lithosphere actually caused drag on the root of the overlying continental lithosphere. One cause for shallow subduction may have been an increased rate of plate convergence. Another proposed cause was subduction of thickened oceanic crust.
Magmatism associated with subduction occurred not near the plate edges (as in the volcanic arc of the Andes, for example), but far to the east, along the Colorado Mineral Belt. Geologists call such a lack of volcanic activity near a subduction zone a magmatic gap. This particular gap may have occurred because the subducted slab was in contact with relatively cool continental lithosphere, not hotter asthenosphere. One result of shallow angle of subduction and the drag that it caused was a broad belt of mountains, some of which were the progenitors of the Rocky Mountains. Part of the proto-Rocky Mountains would be later modified by extension to become the Basin and Range Province.
During the Laramide orogeny, basin floors and mountain summits were much closer to sea level than today. After the seas retreated from the Rocky Mountain region, , , and vast lakes developed in the basins. Drainage systems imposed at that time persist today. Since the Oligocene, episodic epeirogenic uplift gradually raised the entire region, including the Great Plains, to present elevations. Most of the modern topography is the result of Pliocene and Pleistocene events, including additional uplift, glaciation of the high country, and denudation and dissection of older Cenozoic surfaces in the basin by fluvial processes.
In the United States, these distinctive intermontane basins occur principally in the central Rocky Mountains from Colorado and Utah (Uintah Basin) to Montana and are best developed in Wyoming, with the Bighorn Basin, Powder River, and Wind River being the largest. Topographically, the basin floors resemble the surface of the western Great Plains, except for vistas of surrounding mountains.
At most boundaries, Paleozoic through Paleogene units dip steeply into the basins off uplifted blocks cored by Precambrian rocks. The eroded steeply dipping units form hogbacks and flatirons. Many of the boundaries are thrust fault or . Although other boundaries appear to be homocline, faulting is suspected at depth. Most bounding faults show evidence of at least two episodes of Laramide (Late Cretaceous and Eocene) movement, suggesting both thrust and strike-slip types of displacement.
Ecological consequences
See also
Footnotes
External links
|
|